Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases.

نویسندگان

  • Marina Bibikova
  • Mary Golic
  • Kent G Golic
  • Dana Carroll
چکیده

Zinc-finger nucleases (ZFNs) are hybrids between a nonspecific DNA-cleavage domain and a DNA-binding domain composed of Cys(2)His(2) zinc fingers. Because zinc fingers can be manipulated to recognize a broad range of sequences, these enzymes have the potential to direct cleavage to arbitrarily chosen targets. We have tested this idea by designing a pair of ZFNs that recognize a unique site in the yellow (y) gene of Drosophila. When these nucleases were expressed in developing larvae, they led to somatic mutations specifically in the y gene. These somatic mosaics were observed in approximately one-half of the males expressing both nucleases. Germline y mutations were recovered from 5.7% of males, but from none of the females, tested. DNA sequences were determined and showed that all of the mutations were small deletions and/or insertions located precisely at the designed target. These are exactly the types of alterations expected from nonhomologous end joining (NHEJ) following double-strand cleavage of the target. This approach promises to permit generation of directed mutations in many types of cells and organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila

Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-t...

متن کامل

Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases.

Zinc finger nucleases (ZFNs) are powerful tools for gene therapy and genetic engineering. The high specificity and affinity of these chimeric enzymes are based on custom-designed zinc finger proteins (ZFPs). To improve the performance of existing ZFN technology, we developed an in vivo evolution-based approach to improve the efficacy of the FokI cleavage domain (FCD). After multiple rounds of c...

متن کامل

Progress in Genome Editing Technology and Its Application in Plants

Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to reco...

متن کامل

Efficient gene targeting in Drosophila with zinc-finger nucleases.

This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequenc...

متن کامل

Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases

Genome editing using engineered nucleases is used for targeted mutagenesis. But because genome editing does not target all loci with similar efficiencies, the mutation hit-rate at a given locus needs to be evaluated. The analysis of mutants obtained using engineered nucleases requires specific methods for mutation detection, and the enzyme mismatch cleavage method is used commonly for this purp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 161 3  شماره 

صفحات  -

تاریخ انتشار 2002